Silicon nanophotonic networks for quantum optical information processing

  • April 04, 2017
  • 7:00 PM - 8:00 PM
  • Laboratory for Laser Energetics - East Lobby 240 East River Road, Rochester, NY 14623

Abstract:


Silicon nanophotonics show a lot of promise as the basic architecture for quantum information processing devices. This is particularly the case in relation to the scalability of such devices. During this talk I will review our simple theoretical model of a structure that we have identified as a ‘fundamental circuit element’ for linear optical quantum information processing in silicon nanophotonics. In particular, we have shown that, owing to an effect we call Passive Quantum Optical Feedback (PQOF), the topology of this circuit element allows for certain possible operational advantages, in addition to inherent scalability, not expected in bulk linear optics. I will emphasize the extension of our work to larger networks, including the Knill-Laflamme-Milburn (KLM) Controlled-Not (CNOT) gate and its important constituent, the so-called Nonlinear Sign (NS) shifter. Further, I will discuss our ongoing effort to design and optimize scalable networks that seem to have useful applications in quantum metrology and sensing. In developing the discussion, I will examine recent developments related to incorporation of losses and spectral properties in such a way as to generalize our simple, continuous-wave (cw) model of essentially lossless operation. I will also discuss on-chip generation and control of entangled photons within the nanophotonic material itself, especially as related to potentially useful applications in information processing.



Bio:


Since 2006 Prof. Hach is a Lecturer in the Department of Physics at Rochester Institute of Technology. Prof. Hach’s doctoral dissertation entitled Dynamics of a Three-Level Raman Coupled Atom Interacting with Two Classical and Two Quantized Modes of the Electromagnetic Field was completed under mentorship of Dr. Julio Gea-Banacloche. 


Recent awards and honors:


 • Nominee for the Richard and Virginia Eisenhart Provost's Award for Excellence in Teaching, Rochester Institute of Technology, 2008 

• Nominee for the Richard and Virginia Eisenhart Provost's Award for Excellence in Teaching, Rochester Institute of Technology, 2007 

• Recipient of the Nadine Baum Award for Excellence in Teaching, University of Arkansas, Fayetteville, 1998.

 • Recipient of the Departmental Award for Excellence in Teaching, Department of Physics, University of Arkansas, Fayetteville, 1996

  • Home
  • Silicon nanophotonic networks for quantum optical information processing
Powered by Wild Apricot Membership Software